Weighted Vogan Diagrams Associated to Real Nilpotent Orbits

نویسنده

  • ESTHER GALINA
چکیده

We associate to each nilpotent orbit of a real semisimple Lie algebra go a weighted Vogan diagram, that is a Dynkin diagram with an involution of the diagram, a subset of painted nodes and a weight for each node. Every nilpotent element of go is noticed in some subalgebra of go. In this paper we characterize the weighted Vogan diagrams associated to orbits of noticed nilpotent elements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits Quantization of Nilpotent Coadjoint Orbits

Let G be a complex reductive group. We study the problem of associating Dixmier algebras to nilpotent (co)adjoint orbits of G, or, more generally, to orbit data for G. If g = 0 + n + in is a triangular decomposition of g and 0 is a nilpotent orbit, we consider the irreducible components of 0 n n, which are Lagrangian subvarieties of 0. The main idea is to construct, starting with certain "good"...

متن کامل

Rings of Regular Functions on Spherical Nilpotent Orbits for Complex Classical Groups

Let G be a classical group and let g be its Lie algebra. For a nilpotent element X E g, the ring R(Ox) of regular functions on the nilpotent orbit Ox is a Gmodule. In this thesis, we will decompose it into irreducible representations of G for some spherical nilpotent orbits. Thesis Supervisor: David Alexander Vogan Title: Professor of Mathematics

متن کامل

On the Equivariant K-theory of the Nilpotent Cone

In this note we construct a “Kazhdan-Lusztig type” basis in equivariant K-theory of the nilpotent cone of a simple algebraic group G. This basis conjecturally is very close to the basis of this K-group consisting of irreducible bundles on nilpotent orbits. As a consequence we get a natural (conjectural) construction of Lusztig’s bijection between dominant weights and pairs {nilpotent orbit O, i...

متن کامل

Unitary representations of reductive Lie groups

One of the fundamental problems of abstract harmonic analysis is the determination of the irreducible unitary representations of simple Lie groups. After recalling why this problem is of interest, we discuss the present state of knowledge about it. In the language of Kirillov and Kostant, the problem nally is to \quantize" nilpotent coadjoint orbits.

متن کامل

Lusztig’s Canonical Quotient and Generalized Duality

We give a new characterization of Lusztig’s canonical quotient, a finite group attached to each special nilpotent orbit of a complex semisimple Lie algebra. This group plays an important role in the classification of unipotent representations of finite groups of Lie type. We also define a duality map. To each pair of a nilpotent orbit and a conjugacy class in its fundamental group, the map assi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008